CS 전공/리뷰2011. 3. 25. 00:44
목 차
1. 데이터 센터와 클라우드 컴퓨팅
2. MapReduce
3. MapReduce에 관한 논쟁: 장점과 단점
4. MapReduce 개선에 관한 연구들
5. 연구 분야와 도전 과제들
6. 결론 및 향후 전망
관련 연구 


 

1. 데이터 센터와 클라우드 컴퓨팅

 
 
컴퓨터 구조학의 대가인 UC버클리 대 교수 David A. Patterson이 “데이터 센터가 곧 컴퓨터”라고 언급한 바와 같이 현재의 컴퓨팅은 개인이 소유한 PC를 이용한 컴퓨팅에서 데이터 센터가 보유한 무수히 많은 서버들을 이용하여 컴퓨팅을 임대, 사용하는 클라우드 컴퓨팅 으로 빠르게 넘어가고 있다[1].

클라우드 컴퓨팅은 “최소한의 관리만으로 빠르게 제공, 해제될 수 있는 조정 가능한 컴퓨팅 자원의 공유 풀을 접근할 수 있는 요구 중심의 네트워크 접근을 위한 모델”[2]로 정의한다. 클라우드 컴퓨팅을 위한 데이터 센터에서는 많은 계산이 요구되는 대용량 데이터를 많은 저가의 범용 x86 머신에 분배하여 병렬 처리하는 방식으로 확장성(scalability)를 제공한다. 이와 유사한 개념으로 기존에도 그리드 컴퓨팅과 같은 개념이 존재하였지만, 클라우드 컴퓨팅은 데이터 센터라는 지역적으로 집중된 한 곳에 많은 PC들을 설치해놓고 컴퓨팅을 대여, 이용한 만큼 과금한다는 점에서 자발적인 참여와 노드들이 서로 다른 관할권에 속하는 그리드 컴퓨팅과는 구별된다.  

MapReduce[3]는 이러한 데이터 센터 중심의 컴퓨팅에서 “첫 번째 명령어” [1]라고 언급될 정도로 여러 분야 특히 대용량 데이터 분석 및 처리 분야에서 많은 각광을 받고 있다. 2009년 한해 구글에서는 총 3,467K 개의 작업을 평균 488개의 노드를 이용해 처리했다고 밝혔다. 한 해에 데이터는 총 544,130 TB에 이르렀다 한다[4]. MapReduce의 오픈 소스 Java 구현인 Hadoop 또한 많은 분야에서 널리 이용되고 있다[5].
 

 2. MapReduce

MapReduce는 Google에서 정보 검색을 위한 데이터 가공(색인어 추출, 정렬 및 역 인덱스 생성 등)을 목적으로 개발된 분산 환경에서의 병렬 데이터 처리 기법이자 프로그래밍 모델이며, 또한 이를 지원하는 시스템이다[3]. MapReduce는 비공유 구조(shared-nothing)로 연결된 여러 노드 PC들을 가지고 대량의 병렬 처리 방식(MPP; Massively Parallel Processing)으로 대용량 데이터를 처리할 수 있는 방법을 제공한다.  이를 보다 간편하게 하기 위해 MapReduce는 LISP 프로그래밍 언어에서의 map과 reduce 함수의 개념을 차용하여 시스템의 분산 구조를 감추면서 범용 프로그래밍 언어를 이용해 병렬 프로그래밍을 가능하게 한다.

 즉, MapReduce에서는 단순히 Map과 Reduce라는 두 함수의 구현을 통해 데이터 처리를 병렬화할 수 있다. Map과 Reduce가 수행하는 동작은 아래와 같다.

 

Map: (key1, value1) -> (key2, value2)    //(key, value) 쌍을 읽어 다른 (key, value) 쌍에 대응

Reduce: (key2, List_of_value2) -> (key3, value3)   //key2를 기준으로 취합된 value list를 읽어 집계된 값 value 3를 출력


즉, Map 함수는 임의 키-값 쌍을 읽어서 이를 필터링하거나, 다른 값으로 변환하는 작업을 수행하고, Reduce 함수는 Map 함수를 통해 출력된 값들을 새 키 key2를 기준으로 그룹화(grouping) 한 후 여기에 집계 연산(aggregation)을 수행한 결과를 출력한다. 이는 기존 SQL DBMS에서 selection 연산 후 group-by-aggregation을 수행하는 것과 유사하다고도 할 수 있다. 하지만, MapReduce는 이 간단한 두 함수를 이용해 여러 노드들을 대상으로 데이터를 병렬 처리할 수 있는 특징을 가진다.

 그림 1은 MapReduce의 처리 흐름을 나타낸다. 분석할 입력 데이터는 분산 파일 시스템인 GFS(Google File System)[6] 위에 먼저 적재되고, 이 때 데이터는 기본 64MB 크기의 여러 데이터 청크(chunk)들로 분할된다. GFS는 각기 분할된 청크들에 대해 장애로부터의 복구를 위해 2개의 추가적인 복사본을 생성하며 이들을 클러스터를 구성하는 각기 다른 노드 PC들에 위치시킨다.


 


그림 1. MapReduce의 처리 흐름


 
MapReduce 수행 시 이 GFS 상에 적재된 각 청크들은 Map 함수를 수행하는 Mapper 태스크들에 할당된다. Mapper들은 클러스터 상의 여러 노드들에 분산되어 있으며 각기 청크 하나를 받아 Map 함수를 수행하고 그 결과는 Mapper가 수행된 노드의 로컬 디스크에 기록한다. 만약 처리할 청크가 아직 있으면 실행 중에 이미 종료되어 유휴한 Mapper에게 추가로 청크를 할당한다. 이런 방식은 일찍 작업을 종료한 Mapper가 더 많은 청크를 입력받아 처리하도록 함으로써 적절히 부하를 분산시키는 런타임 스케쥴링 효과를 갖는다. 더 이상 처리해야 할 청크가 없고 모든 Mapper가 정상 종료되었다면, MapReduce의 스케쥴러는 Reducer 태스크를 수행한다.
 

 Reducer HTTPS를 이용해 여러 노드들로부터 Key2를 기준으로 각 reducer가 처리해야 할 키-값 쌍을 이전 Mapper들의 로컬 디스크로부터 읽어온다. 이는 집계 연산을 위해 Map 결과를 추가적으로 분할하기 위한 것으로 일반적으로 hash(key2) mod n과 같은 해시 분할을 이용하여 데이터를 n 개의 reducer에 분할시킨다. 이후 key2 값을 기준으로 정렬 연산을 수행하고, 이렇게 해서 정렬된 키-값 쌍들을 동일 키 값을 기준으로 그룹화를 수행한다. 이렇게 해서 각 key2 값을 기준으로 그룹지어진 값들을 대상으로 집계 연산을 수행하고 그 결과를 다시 GFS 상에 다른 키-값 쌍으로 출력한다.
 

Mapper들은 선택적으로 combiner를 가질 수도 있다. 이는 Mapper가 키-값 쌍만을 출력하고 이를 Reducer가 복사, 분할하는데 드는 I/O와 네트워크 대역폭을 절감하고자 각 Mapper가 출력하는 키-값쌍에 대해 미리 그룹화하고 집계 연산을 수행하도록 하는데 이용된다(pre-aggregation).

  데이터 처리 중에 장애 발생 시 Mapper의 경우 같은 청크를 대상으로 다시 수행하거나, 또는 유휴한 다른 Mapper가 해당 청크를 수행하게 함으로써 내고장성을 지원한다. Reducer의 장애의 경우에는 Mapper의 결과는 이미 로컬 디스크에 Mapper의 결과가 실체화된 상태이므로 Mapper의 수행은 건너뛰고 Reducer 작업을 다시 수행한다. 파일의 내구성은 GFS의 데이터 복제에 의존한다.
 

 MapReduce에서는 또한 2 개 이상의 MapReduce 작업을 서로 연결함으로써 보다 복잡한 알고리즘을 구현하는 것도 가능하다. 즉 한 MapReduce 작업이 종료된 후 두 번째 MapReduce 작업이 GFS상의 첫 작업의 결과를 입력으로 하여 동작하는 방식이다. 이 경우에도 각 Map, Reduce 단계의 결과들은 모두 로컬 디스크 또는 분산 파일 시스템 위에 기록됨으로써 내구성이 보장된다.
 

 3. MapReduce에 관한 논쟁: 장점과 단점

MapReduce의 인기에 대해 데이터베이스 연구자들, 특히 병렬 DBMS를 연구해 왔던 학자들은 많은 비판을 가하였다. DBMS 진영의 대표적인 학자들인 M. Stonebraker D. DeWitt MapReduce“A Major Step Backward”라고 비판한 바 있다[7]. 이들은 MapReduce에서의 데이터 병렬 처리 기법은 이미 기존 병렬 DBMS에서 이미 해왔던 것이며, DBMS에서 지원하는 많은 기능들, 예를 들어 스키마, 표준 질의어, 인덱스 기법, 질의 최적화, 압축, 여러 데이터 분할 기법 등 이 빠져 있다고 비판하였다. 이후 2009 SIGMOD에는 이들과 MIT Sam Madden 팀이 같이 Hadoop과 행-기반 DBMS와 열-기반 병렬 DBMS의 성능을 Grep TPC-H 연산 등을 대상으로 비교한 논문을 발표하였다[8]. 여기에서는 데이터 적재 시간을 제외한 나머지 모든 작업에서 MapReduce DBMS, 특히 열-기반 병렬 DBMS보다 못하다라고 언급하였다. MapReduce를 옹호하는 진영은 주로 산업계에서 종사하는 실무자들로 이 비교가 DBMS로 수행하기 좋은 작업들을 대상으로 하였다고 반박하였다. 그들은 MapReduce의 용도는 DBMS와 다르며, 데이터의 일괄 병렬 처리를 위한 시스템으로써 그 의의가 크다고 설명하였다. 반대로 DBMS 진영에서는 연구자들을 중심으로 MapReduce는 이미 연구되었거나 DBMS에서 이미 지원하고 있는 병렬 처리 기법이나 데이터 처리 기법들을 고려하지 않은 매우 순진한(naïve) 시스템이라 비판하였다. 이 기술적 논쟁이 가열되자 ACM에서는 이 두 진영의 의견을 학회지 CACM 2010 1월호에 나란히 올려 이 논쟁을 소개하였다[9, 10]. 

두 진영에서 서로 언급하고 있는 MapReduce의 장단점을 요약하면 다음과 같다.
 

 3.1. MapReduce의 장점

1) 단순하고 사용이 편리

MapReduce는 먼저 Map(), Reduce()라는 두 개의 함수를 구현함으로써 병렬 처리를 가능하게 한다는 것이 큰 장점이다. 데이터의 분산 배치와 실행은 스케쥴러가 담당함으로써 사용자는 분산 시스템의 물리적 구조를 알지 않아도 데이터 병렬화(data parallelism) 방식을 통한 분산 처리를 매우 쉽게 할 수 있는 이점이 있다.
 

 2)  유연성

MapReduce는 특정화된 데이터 모델이나 스키마 정의, 질의 언어에 의존적이지 않다. 사용자는 범용의 프로그래밍 언어를 이용하여 데이터를 어떻게 처리할지 기술한다. 따라서 관계형 데이터 모델로는 표현되기 어려운 다르거나, 비정형적인 데이터 모델들도 지원할 수 있는 유연성을 갖는다.

 3)  저장 구조와의 독립성

MapReduce는 병렬 데이터 처리를 위한 시스템으로 하부 저장구조와 독립적이다. 기본적으로는 MapReduce GFS와 같은 분산 파일 시스템 상의 파일을 입출력으로 하지만, 그외 일반 파일 시스템이나 DBMS 등 다른 저장 구조를 하부에 두는 것도 가능하다.

 4) 내고장성

MapReduce는 분산 파일 시스템의 데이터 복제(replication)에 기반한 데이터의 내구성(durability) 지원과 함께 Mapper Reducer의 태스크 장애 시 각 태스크의 재수행을 통해 장애로부터의 내고장성을 확보한다. 이 때 Map Reduce 작업이 처음부터 다시 실행되는 것을 막기 위해 Map의 결과는 Mapper가 수행된 노드의 로컬 디스크에 기록된다.
 

 5) 높은 확장성(scalability)

MapReduce의 오픈 소스 구현인 Hadoop 4,000 노드 이상으로 확장될 수 있을 정도로 높은 확장성을 가진다[11]. 처리해야 할 데이터 크기가 커지면 그만큼 높은 작업처리량(throughput)을 가지도록 시스템을 개선해야 한다. 기존의 방식은 HW 성능의 개선을 통해처리량을 향상시키는 scale-up 방식이었던 반면에, MapReduce는 저가의 범용 PC들을 추가로 할당함으로써 확장성을 지원하는 scale-out 방식의 구현을 용이하게 한다.


 3.2. MapReduce의 단점

1)  고정된 단일 데이터 흐름

Map Reduce만을 정의하도록 한 MapReduce는 단순한 인터페이스를 제공함에 반해, 복잡한 알고리즘이나 selection-then-group-by-aggregation 작업이 아닌 알고리즘에서는 효율적이지 않다. 대표적인 것이 Join과 같은 이항 연산자(binary operator)의 지원이나 Loop의 지원이다. MapReduce에서는 이항 연산자를 지원하지 않았다. 때문에 Join은 하나의 MapReduce 작업으로 표현되지 못하고 여러 개의 MapReduce 작업을 직렬로 연결해 표현해야만 했다. Loop의 경우도 매 반복 때마다 계속 입력을 반복해서 읽어야 하는 등의 I/O 낭비가 심하였다. , MapReduce에서는 DAG(Directed Acyclic Graph) 형태로 자신의 워크플로우를 따로 정의하는 작업은 불가능하며, 복잡한 알고리즘의 구현을 위해서는 여러 번의 MapReduce 작업을 수행해야 하는 불편함과 그에 따른 성능 저하가 많다. [12]는 어떻게 반복적인 작업을 MapReduce가 비효율적으로 수행할 수 있는지에 대한 대표적인 예가 될 수 있겠다.
 

 2)  스키마, 인덱스, 고차원 언어 등의 미지원

 MapReduce는 병렬 처리에 대한 두 인터페이스를 제공하는 것 이외에 기존의 DBMS가 제공하는 스키마나 질의 언어, 인덱스 등을 제공하지 못한다. 스키마는 데이터의 무결성(integrity)를 지원하는데 있어서 중요한데, 이의 미비는 결국 프로그램 로직 상에서 무결성을 검증하도록 하게 한다. 이런 경우 프로그램도 복잡해지려니와 하부 데이터 형식의 변경은 프로그램 로직의 변경을 야기하고, 매번 데이터를 읽을 때마다 파싱을 수행해야 하는 부담도 갖는다. SQL과 같은 질의 언어의 미지원도 또한 질의 형식의 재활용이나 손쉬운 질의의 작성을 어렵게 한다. 인덱스는 질의 처리 성능의 향상을 위해 중요하지만 MapReduce는 인덱스를 지원하지 않으며, 데이터의 일괄 처리만을 제공한다. 때문에 DeWitt Stonebraker등은 MapReduce를 단순한 LTE(Load-Transform-Extract) 도구로만 처음에 언급하였다[7].
 

 3)  단순한 스케쥴링

 MapReduce는 기본적으로 런타임 스케쥴링에 기반한다. Hadoop의 예에서, 런타임 스케쥴링에서는 태스크를 수행하는 경우는 1) 실패한 태스크를 재수행하거나 또는 2) 아직 수행되지 않은 태스크를 수행하는 경우 또는 3)태스크가 매우 느린 경우이다.  특히 3)의 경우는 임계값을 설정해 두고 일정 시간 동안에 임계값을 도달하지 못하는 경우 straggler로 판정하고 이를 다시 수행시키는데, 노드 PC 성능이 상이한 경우 이 과정이 효과적이지 못하다.

더불어 한 클러스터에서 여러 MapReduce 작업을 동시에 수행하는 경우에 대해서 효과적인 다중-작업 스케쥴링을 제공하지 못한다.
 

 4)  상대적으로 낮은 성능

 MapReduceDBMS와 비교해 상대적으로 낮은 성능을 보인다. 이러한 시스템에서의 성능 측정은 대개 단위시간당 작업처리량(throughput)이나 시스템의 효율성(efficiency) 등으로 측정할 수 있다. [8]에서 보인 바와 같이 MapReduce는 다른 병렬 DBMS에 비해 데이터 적재 시간 이외에 우수한 성능을 보이지 못했다. DBMS의 경우 테이블에의 적재 이외에 인덱스 생성 시간 등이 소요되어 더 많은 시간이 소요되었다. [14]의 연구는 MapReduce를 이용한 병렬 정렬 연산에 있어 한 노드의 작업처리량이 5MB/sec에 못 미침을 보인다.

 MapReduce의 이러한 낮은 성능은 내고장성 지원을 위해 디스크 I/O를 희생하는 태생적인 이유에 근거한다. 우선 파일을 보관하는 분산파일 시스템은 2개의 replica를 추가로 가짐에 따라 디스크 공간과 I/O를 소비한다. 복제된 이후 읽기 연산은 각기 다른 복사본에 접근함으로써 병렬화를 꾀할 수는 있지만, 대신에 출력의 경우는 한 데이터를 가지고 여러 노드에 분산, 기록해야 한다.
또한 각 태스크는 수행 결과를 다음 태스크에 전달하기 이전에 태스크를 수행한 노드의 로컬 디스크 또는 분산 파일 시스템 상에 기록하는 과정을 먼저 수행한다. 이러한 추가적인 I/O는 DBMS에서는 존재하지 않던 것이었다. 예를 들어 다음과 같은 질의가 있다고 하자.

select distinct b.Name, avg(e.Salary)
from employee e, branch b where

b.Id= e.branchId and b.State ="AZ" 
groupby b.id

이 질의는 애리조나 주에 있는 지점들의 종업원의 봉급 평균을 지점별로 분류해서 출력하도록 한다.
이 질의에 대한 DBMS에서의 질의 플랜은 아래와 같다.

그림 2. 질의 플랜 트리

DBMS에서는 이러한 질의 플랜 트리의 수행에 있어 각 연산자가 다음 연산자에 데이터를 전달하기 전에, 데이터를 디스크에 기록한 다음 전달하지 않는다. 디스크 I/O를 가장 큰 비용으로 산정하여 디스크 I/O를 최대한 줄이고자 노력했기 때문이다. 반대로 MapReduce는 매번 연산자가 다음 연산자에 데이터를 전달 전에 디스크에 기록을 먼저 한다. Map은 로컬 디스크에 기록하고, Reduce는 분산 파일 시스템 위에 기록한다. MapReduce가 이러한 방식을 취하는 이유는 간단하게 내고장성을 지원하기 위해서이다. 반대로 디스크 I/O 때문에 성능은 더디어질수밖에 없다. 
 

여기에 더해 MapReduce 태스크들은 블로킹 연산자이다. 예를 들어 모든 Mapper가  종료되기 전까지 Reducer는 시작될 수가 없다. 이는 한 태스크가 느려지면 그 위의 질의 플랜 상의 다른 연산자들이 수행되지 못하고 대기 상태로 기다리게 한다. 그리고 그만큼 전체 실행 시간은 길어진다.
DBMS에서의 질의 플랜 트리는 각 연산자들의 중간 결과를 디스크에 기록하지 않고, 처리하는 족족 위 연산자에 전달한다. 따라서 각 연산자들이 동일시점에 서로 다른 데이터를 가지고 처리할 수 있는 
 파이프라인 병렬화(pipeline parallelism)가 가능하다. 하지만, MapReduce에서는 이와 같은 같은 병렬화를 수행할 수 없고 하나의 늦은 태스크(straggeler) 때문에 전체 작업이 지연될 수 있다
.
물론 DBMS에서도 Sort 같은 블로킹 연산자들은 존재한다. 하지만, 보다 많은 파이프라인 병렬화를 지원한다.

또한 MapReduce는 인덱스를 지원하지 않고, 데이터를 일괄로 읽음에 따라 I/O를 절약하기 곤란하다. 위의 그림에서 scan 시 인덱스를 이용한 입력 데이터의 생략을 MapReduce는 기대할 수 없었다.

이러한 이유로 MapReduce는 태생적으로 병렬 DBMS에 비해 간단하면서도 내고장성을 지원할 수 있는 반면 상대적으로 낮은 성능을 보일 수 밖에 없다. DBMS 분야에서는 각 연산자의 중간 결과 실체화라는 MapReduce의 가장 큰 특징을 유지하면서 기존의 DBMS에서의 I/O를 줄이기 위한 예전 연구들을 MapReduce에 적용하는 방식으로 성능 향상을 꾀한다. (이는 2부에서 설명한다.)

 5)  상대적으로 어린 시스템

MapReduce40여년의 역사를 가진 DBMS와 비교하여 아직 나온지 얼마 안된 기술임에 따라 여러 개발도구나 BI(business intelligence), 3rd party tool들이 존재하지 않는다. 또한 그 자체도 개선의 여지가 아직 많다. 예로, 오늘까지 MapReduce 논문[3]의 인용횟수는 2,575회이다. 그만큼 인기도 있지만 개선의 여지도 많다고 봐야 한다. 

 
 MapReduce 개선에 관한 연구들과 연구 이슈, 도전 분야는 2부에 계속

 
 

관련 연구

1. David A. Patterson. Technical perspective: the data center is the computer. Communications of ACM, 51(1):105, 2008.

2.   Peter Mell and et al. NIST Definition of Cloud Computing V15, 2009. http://csrc.nist.gov/groups/SNS/cloud-computing

3.   Jeffrey Dean and Sanjay Ghemawat, MapReduce: Simplified Data, Processing on Large Clusters, In Proceedings of OSDI 2004 and CACM Vol. 51, No. 1 2008

4.Jeff Dean, Design, Lessons, Advices from Building Large Distributed System, Keynote , LADIS 2009.

5. Hadoop. users List; http://wiki.apache.org/hadoop/PoweredBy

6. S. Ghemawat and et al., The Google File System, In Proceedings of ACM SIGOPS, 2003

7.   David J. DeWitt and Michael Stonebraker, MapReduce: a major step backwards, Database column blog, 2008

8.  Andrew Pavlo and et al. A Comparison of Approaches to Large-Scale Data Analysis, In Proceedings of SIGMOD 2009

9.   Michael Stonebraker and et al. MapReduce and Parallel DBMSs: Friends or Foes?, Communications of ACM, Vol 53, No. 1 pp. 64-71, Jan 2010

10.  Jeffrey Dean and Sanjay Ghemawat, MapReduce: A Flexible Data Processing Tool, Communications of the ACM,  Vol. 53, No. 1 pp. 72-72 Jan 2010

11.  Ajay Anand, Scaling Hadoop to 4000 nodes at Yahoo!, Yahoo! Developer Network, http://developer.yahoo.com/blogs/hadoop/posts/2008/09/scaling_hadoop_to_4000_nodes_a/

12.   J. Cohen, Graph twiddling in a mapreduce world, Computing in Science & Engineering pp. 29—41, 2009, IEEE Computer Society

13.   E. Anderson and et al. Efficiency matters!, ACM SIGOPS Operating Systems Review 44(1):40—45, 2010 ACM

Written by bart7449 

Posted by Bart
CS 전공/리뷰2011. 3. 2. 15:29
 "모든 컴퓨터 아키텍트들은 암달의 법칙을 알고 있다. 그럼에도 불구하고, 우리는 때때로 불가능한 성능 최적화를 위해 막대한 노력을 기울인다. 그리고, 전체 속도향상이 실망스러운 수준임을 확인했을 때에서야 비로소 암달의 법칙을 떠올린다."-In  Computer Architecture: A Quantitative Edition, 4th ed.  John L. Hennessy and David A. Patterson 

"모두들 암달의 법칙을 알고 있지만, 금방 잊어버린다!" - Thomas Puzak

  병렬 처리에 있어 중요한 비교척도로는 속도향상과 효율성이 존재한다. 1개의 프로세서 또는 1개의 노드 추가로 이루어지는 어떠한 알고리즘의 속도향상(speedup)은 다음과 같이 계산된다.
  (식 1)

 여기에서,  n는 프로세서의 수 또는 노드의 수, T1은 직렬 알고리즘의 실행 시간,   Tn 는 n 개의 프로세서 또는 노드를 이용한 병렬 알고리즘의 실행 시간을 의미한다.  속도 향상은 다시 크게 절대 속도향상(absolute speedup)과 상대 속도향상(relative speedup)으로 나뉘는데, 절대 속도 향상은 T1 이 가장 최적의 직렬 알고리즘(best sequential algorithm)의 실행 시간인 반면에, 상대 속도 향상에서는   T1 이 병렬 알고리즘을 한 프로세서에서 실행된 시간이다. 보통 속도향상을 얘기할 때는 상대 속도향상을 의미한다.

효율성(Efficiency)은 한 프로세서 또는 노드가 병렬 처리를 위해 얼마나 잘 활용되는지를 비교하는데 이용된다. 
 (식 2) 

 이상적으로는 병렬 처리에서 속도 향상은 추가되는 n 개의 프로세서 또는 노드의 수에 따라 선형(linear)으로 증가한다. 즉, Speedup(n) = n이 된다.  이 경우 효율성은 1이 된다. 하지만 실제로는 I/O, 네트워크 대역폭(bandwidth), 지연시간(latency) 등 여러 이유로 1이 되지 못한다. 가장 대표적인 이유는 알고리즘의 모든 부분을 병렬화(parallelize) 시킬 수가 없기 때문인데, 이 알고리즘에 남아있는 직렬 처리 부분은 모든 알고리즘의 병렬화의 한계를 결정한다. 이는 암달의 법칙(Amdahl's law)으로 설명된다.  
  

Amdahl's law[각주:1]
 암달의 법칙은 1967년 한 컨퍼런스에서 IBM의 Gene Amdahl이 논한 것으로, 이 공식은 어떤 시스템의 f  비율만큼의 부분이 S만큼 속도향상이 있을 때, 최대로 얻을 수 있는 이상적인 속도향상은 다음과 같이 제약됨을 설명한다. 또한, 여기에서는,  프로그램 수행을 통해 풀고자 하는 문제의 크기가 특정 부분의 속도 향상의 전후에도 언제나 동일한 것으로 가정한다.
 식(3)

1) 만약 속도향상을 이룬 부분이 작다면 (f값이 작다면), 전체 시스템의 속도향상은 미미하다.
2) 만약 f 부분의 속도향상을 무한대(S ∞)로 할 수 있다면, 전체 시스템의 속도향상은 1/(1-f)로 수렴될 수 있다.

예를 들어 전체 시스템의 20%를 2배만큼 속도향상을 시킬 수 있다면, 이로 인해 얻을 수 있는 전체 시스템의 속도향상은:
 (식 4)

로 제한된다. 이 암달의 법칙은 어떠한 프로그램을 병렬화할 때 얻을 수 있는 최대한의 속도향상을 예측하는데 이용되기도 하는데, 이 때는 아래와 같은 형식으로 표현될 수 있다. 
 (식5)

여기에서 f는 프로그램에서 병렬화된 부분을 n은 프로세서 또는 노드의 수를 의미한다.

먼저, 한 프로그램을 하나의 프로세서 또는 노드로 수행시켰을 때의 실행 시간을 1로 한다. 
다음으로 프로그램의 일정 부분 f를 n개의 프로세서나 노드로 병렬화하여 처리한다면, 이 f의 실행 시간은  f/n만큼의 시간이 들게 될 것이다. 반대로, 남은 부분 1-f는 한개의 프로세서 또는 노드로 수행하기 때문에 그대로 원래 만큼의 시간이 소요된다. 즉, 프로그램의 일정 부분 f를 n개의 프로세서나 노드를 이용하여 병렬화하는 경우 전체 수행 시간은 1-f+f/n만큼 소요되고, 이를 원래 시간 1과 비교하면 위의 식 5만큼의 성능 개선이 있다고 설명할 수 있다.

예를 들어, 만약 f=1, n=16, 즉 프로그램의 모든 부분이 병렬화되어 있고,  16개의 프로세서를 이용해 병렬 처리한다면, 속도향상은 16배가 될 것이다. 그리고, 이 경우 효율성은 1(=16/16)이 된다.  하지만, 프로그램의 모든 부분을 병렬화 할 수는 없다. 이런 이유로 실제 프로세서나 노드 수를 늘린다고 해도, 어느 수준 이상에서는 속도향상을 기대할 수 없다.  아래 그림은 암달의 법칙에서 프로세서의 증가에 따른 속도 향상의 한계를 보인다. 

Figure 1a.



그래프를 보면 프로그램의 95%(f=0.95)가 병렬화 되어 있다고 해도, 16개의 프로세서를 가지고 10배 이상의 속도향상을 내지 못한다.  이후로는 아무리 많은 수의 프로세서를 가진다 해도 20배 이상의 속도향상을 낼 수가 없다.  즉, 병렬화 되지 않은 부분이 많을수록 속도향상은 더 적다. 50%의 병렬화를 통해 16 프로세서를 가지고 얻을 수 있는 속도향상은 2배 밖에 되지 못한다. 실제로 프로그램 상에 남아있는 직렬 실행 부분의 비율은 아래 그래프와 같이 병렬화를 통해 얻을 수 있는 속도향상을 제약한다.

Figure 1b.


이러한 이유로 병렬 처리에서 있어서는 프로그램의 직렬화 부분(1-f)를 얼마만큼 줄이느냐, 다른 말로 병렬화 부분(f)을 얼마나 늘이느냐 것이 관건이 되어 왔다. 또한, 실제로는 모든 부분을 병렬화할 수 없기 때문에, 프로세서 수를 계속 늘려도 병렬화의 이점을 추가로 가질 수가 없다. 이에 따라서 병렬 처리는 보통 소수의 프로세서를 가지고서 병렬 처리를 해 왔다.  프로그램의 병렬 부분과 속도향상과의 관계는 위 식에 의해 아래와 유도가 가능하다.
 (식 6)
Gustafson's law[각주:2]
 구스타프슨의 법칙은 1988년 Sandia national Lab에 있던 John Gustafson이  고안한 것으로  규모가 충분히 큰 문제들은 효과적으로 병렬화가 가능함을 기술하고 있다. 이는 암달의 법칙이 병렬화를 통해 일정 수준 이상의 속도향상을 기대할 수 없다고 얘기하는 것에 배치되는데, 그렇다고 암달의 법칙이 틀렸다는것은 아니다. 암달의 법칙은 계속 유효하다. 이 법칙은 아래와 같이 표기된다.  
 (식 7)
 여기에서 n은 프로세서 또는 노드의 수, α는 프로그램에서 병렬화되지 않은 부분을 의미한다(, α= 1-f).
이 법칙에 따르면, 만약 n=16이고 α=0.05이라면(95%가 병렬화 되어 있다면), 얻을 수 있는 속도향상은 15.25배(16-0.05*15) 이다. 이는  동일한 조건에서 속도향상은 10배를 넘지 못한다는 암달의 법칙과 상반된다. 이 이유는 무엇인가?

 암달의 법칙이 병렬 처리에 있어 병렬화 전후의 문제 크기는 변하지 않는 것을 가정하는데 반해, 구스타프슨의 법칙은 고정된 처리 시간 개념을 도입하여 보다 큰 문제에 대한 속도향상을 설명한다. 
 즉, 암달의 법칙에서는 고정된 문제 크기를 갖는다고 가정하였는데, 이는 프로세서 수의 증가에 상관없이 문제 크기는 증가하지 않는 것을 기초로 출발하였다.  아래의 그림을 보자.

 그림과 같이 직렬 시스템에서 프로그램을 실행하는데 걸린 시간은 프로그램의 직렬 부분 s와 병렬화 가능한  부분 p의 실행 시간으로 구성된다. 즉, s+p=1 이 병렬화 이전에 소요된 시간이다. 그리고 병렬화를 통해 얻어진 실행시간은 s+p/N이다. 여기에서 N은 프로세서의 수이다. 따라서 전체 속도향상은 식 1에 따라
1/(s+p/N)이 된다. s를 1-f라 하고 p를 f로 치환하면 위의 암달의 법칙(식 5)와 동일한 수식을 얻게 된다.

 반대로, 구스타프슨의 법칙은 주어진 시간 내에 보다 많은 크기의 문제를 해결하는 경우 병렬화가 효과적인 방법이 됨을 설명한다. 아래 그림을 보자 .  


 여기에서는 프로그램을 병렬화하였을 때의 실행 시간을 s+p=1로 하고, 이를 기준으로 프로그램의 직렬 시간과 비교한다. 즉 여기에서 속도향상은 식 1에 따라 s+Np가 된다. 여기에서 s를 α로, N을 n으로 치환하면, 식 7의 구스타프슨 법칙과 같게 된다. 즉 구스타프슨의 법칙은 주어진 시간에 병렬화로 임의 크기의 문제를 해결할 수 있을 때, 직렬 프로그램 실행 시간과의 비교를 통해 속도향상을 측정하는 반면에, 암달의 법칙은 직렬 실행 시간을 기준으로 병렬화를 수행하였을 때 얼마만큼의 속도향상이 있는지를 보인다는 점이 다르다. 병렬화 가능한 부분의 문제 크기가 클수록 구스타프슨 법칙에 따르면, 속도향상이 높게 나올 수 있다. 왜냐하면 문제 크기에 따라 더 많은 프로세서 할당을 통해 병렬 실행 시간 값(p)을 고정시킬 수 있기 때문이다. 예를 들어, 병렬가능한 문제 크기가 100이면, 100개의 프로세서로 할당하면 p=1이 된다. 1000이면, 1000개의 프로세서를 할당해서 p=1로 떨어지게 한다. 반대로 암달의 법칙은 문제 크기와 상관없이 고정된 제한 속도향상 값을 갖는다. 

 자동차를 가지고 두 법칙을 비유하자면, 

1) 자동차로 120Km 떨어진 도시로 이동한다고 하자. 그리고, 60Km/h의 속도로 한시간을 이미 이동하였다. 이제 나머지 절반의 거리를 아무리 빠르게 운전한다 하더라도, 출발지에서 목적지까지의 자동차의  평균 시속은   120Km/h를 넘을 수 없다. 이미 이동하는데 한시간을 써버렸고 아직 60Km의 이동 거리가 남아 있기 때문에 자동차가 남은 거리를 무한대의 시속으로 이동한다 하더라도, 이미 지나간 시간은 돌아오지 못하기 때문이다. (암달의 법칙)

2)  자동차로 120Km/h보다 낮은 속도로 이동하고 있었다고 하자. 남은 시간과 남은 이동거리가 충분하다면, 이전까지 얼마나 많이, 또 얼마나 천천히 운전했냐에 상관없이 자동차의 평균 시속은 120Km/h를 넘을 수 있다. 만약 60Km/h의 속도로 자동차를 한 시간 동안 운전했다면,  이 후 한 시간을 180Km/h 로 운전하거나 또는  150Km/h로 두 시간을 운전한다면, 총 이동 거리에 대한 평균 시속은 120Km/h에 도달하게 된다. (구스타프슨의 법칙)

Karp-Flatt metric[각주:3]
 카프-플랫 척도 1990년에 Alan H. Karp와 Horace P. Flatt에 의해 병렬 프로세서 시스템에서 코드의 병렬화를 측정하기 위해 고안되었다. 이 식은 측정된 속도향상 값을 가지고, 프로그램의 직렬화 부분의 비율을 찾아내는데 효과적이다. 암달이나 구스타프슨의 법칙은 실제 병렬 처리에 있어 스케쥴링, 프로세서간 통신 비용이나 프로세스간 동기화에 소비되는 비용, 프로세서간 불균형한 작업량 등을 고려하지 않는 이상적인 법칙이다. 반면에 이 척도는 실제 실험 결과를 대상으로 직렬화 부분의 비율을 계산할 수 있게 해준다.

 (식 7)
예를 들어, 1개의 프로세서를 가지고 프로그램을 실행하였을 떄 측정된 실행 시간이 5분(T1-5min)이 걸렸고, 10개의 프로세서(n=10)을 가지고 프로그램을 병렬화하였을 때 실행 시간이 1분이 걸렸다면(Tn=1min), 

 (식 8)

으로 해당 코드의 직렬 실행 부분은 1/9(약 11.1%) 임을 식을 통해 유도할 수 있다.  

Superlinear Speedup
  암달의 법칙에 따르면, 병렬화를 통해 얻을 수 있는 속도향상은 선형 이상이 될 수가 없다. 하지만, 특정한 경우에 프로그램의 병렬화는 초선형(superlinear)의 속도향상을 보이기도 한다. 즉, n개의 프로세서로 병렬화를 하였을 때 n배를 초과한 속도 향상이 나오기도 한다. 이렇다고 암달의 법칙이 틀렸다고 할 수는 없다. 다만 암달의 법칙이 초선형의 속도 향상을 보이기도 하는 이유를 설명하지 않는다 정도로 해석하는 것이 맞다. 초선형의 속도향상이 가끔씩 발생하는 이유 중 가장 큰 이유는 메모리 계층 상의 캐시 히트 때문이다.  즉 데이터 처리에 있어 이전에 이용되었던 데이터가 캐시에 남아 있어 메모리나 디스크 IO 없이 빠르게 처리된 경우에는 가끔씩 이런 경우가 목격된다.
  또 다른 이유로는 데이터의 공간 복잡도에서 발생하기도 한다. 예를 들어 x개의 입력을 가지고 2x의 처리 데이터를 작성하는 시스템이 있다고 하자. 이 데이터를 n개의 프로세서에 분할 할당한다고 하면, 각 프로세서는  2x/n  크기의 데이터를 처리할 것이다. 하지만 입력 자체를 n개로 나누어 처리 데이터를 작성한다면, 각 프로세서에 할당되는 데이터의 크기는   2x/n으로  2x/n 보다 훨씬 작게 된다. 병렬 처리 알고리즘의 복잡도가 선형이라면, 그만큼 병렬 실행 시간도 초선형으로 줄어들 수 있다.
 
Acknowledgement
그림 1a.는 Wikipedia의 암달의 법칙에서, 1b.~2b.는 참고문헌 [2]의 논문에서 발췌하였음. 식들은 모두 Online LaTeX Equation Editor를 이용해 작성되었음.

Written by bart7449

  1. Amdahl, G.M. Validity of the single processor approach to achieving large scale computing capabilities, In AFIPS Conference Proceedings, Vol. 30 (Atlantic City, NJ Apr. 18-20). AFIPS Press, Reston, Va., 1967, pp. 483--385 [본문으로]
  2. Gustafson, J.L, Reevaluating Amdahl's law, Communications of ACM , May 1988 Vol. 31, No. 5 pp.532--533 [본문으로]
  3. Karp Alan H. and Flatt Horace P. Measuring Parallel Processor Performance, Communications of ACM, Vol 33, No. 5, May 1990 [본문으로]
Posted by Bart